Class IX Chapter 1 Number Sustems Maths

Exercise 1.1 Question

Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers
$\quad \neq 0$?
and q
Answer:
Yes. Zero is a rational number as it can be represented as $\frac{0}{1}$ or $\frac{0}{2}$ or $\frac{0}{3}$ etc.

Question 2:

Find six rational numbers between 3 and 4.
Answer:
There are infinite rational numbers in between 3 and 4 .
$\frac{24}{8}$ and $\frac{32}{8}$
3 and 4 can be represented as respectively.
Therefore, rational numbers between 3 and 4 are
$\frac{25}{8}, \frac{26}{8}, \frac{27}{8}, \frac{28}{8}, \frac{29}{8}, \frac{30}{8}$

Question 3:

Find five rational numbers
There are infinite $\frac{3}{5}$ and $\frac{4}{5}$
$\frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}$
$\frac{4}{5}=\frac{4 \times 6}{5 \times 6}=\frac{24}{30}$

Therefore,
rational
numbers between $\frac{3}{5}$ and $\frac{4}{5}$ are

Cbse-spot.blogspot.com

$\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}$
Question 4:
State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(ii) Every integer is a whole number.
(iii) Every rational number is a whole number.

Answer:
(i) True; since the collection of whole numbers contains all natural numbers.
(ii) False; as integers may be negative but whole numbers are positive. For example: -3 is an integer but not a whole number.
(iii) False; as rational numbers may be fractional but whole numbers may not be. For example: $\frac{1}{5}$ is a rational number but not a whole number.

Cbse-spot.blogspot.com

State whether the following statements are true or false. Justify your answers.
(i) Every irrational number is a real number.
(ii) Every point on the number line is of the form \sqrt{m}, where m is a natural number.
(iii) Every real number is an irrational number.

Answer:
(i) True; since the collection of real numbers is made up of rational and irrational numbers.
(ii) False; as negative numbers cannot be expressed as the square root of any other number.
(iii) False; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.

Question 2:

Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

Answer:
If numbers such as $\sqrt{4}=2, \sqrt{9}=3$ are considered,
Then here, 2 and 3 are rational numbers. Thus, the square roots of all positive integers are not irrational.

Question 3:
$\sqrt{5}$
Answer:
We know that, $\sqrt{4}=2$
$\sqrt{5}=\sqrt{(2)^{2}+(1)^{2}}$
Show howAnd, can be renresented on the number line.

Mark a point ' A ' representing 2 on number line. Now, construct $A B$ of unit length perpendicular to $O A$. Then, taking O as centre and $O B$ as radius, draw an arc

Cbse-spot.blogspot.com

intersecting number line at C .
C is representing $\sqrt{5}$.
has:
(i) $\frac{36}{100}_{\text {(ii) }} \frac{1}{11}$ (iii) $4 \frac{1}{8}$
(iv) $\frac{3}{13}_{\text {(v) }}^{\frac{2}{11}}$ (vi) $\frac{329}{\frac{300}{400}}$

Answer:
(i) $\frac{36}{100}=0.36$

Terminating
(ii) $\frac{1}{11}=0.090909 \ldots \ldots . . \overline{ }=0 . \overline{09}$

Non-terminating repeating
(iii) $4 \frac{1}{8}=\frac{33}{8}=4.125$

Terminating
(iv) $\frac{3}{13}=0.230769230769 \ldots .=0 . \overline{230769}$

Non-terminating repeating
(v) $\frac{2}{11}=0.18181818 \ldots \ldots \ldots=0 . \overline{18}$

Non-terminating repeating
(vi) $\frac{329}{400}=0.8225$

Terminating
You know that ${ }^{\frac{1}{7}=0 . \overline{142857} \text { Question 2: }} \begin{aligned} & \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}\end{aligned} \quad \begin{aligned} & \text { Exercise }\end{aligned}=\frac{1}{}$

$$
\frac{1}{7}=0 . \overline{142857} \quad \text { Question 2: }
$$

Write the following in decimal form and say what kind of decimal expansion each . Can you predict what the decimal expansion of

Cbse-spot.blogspot.com

are, without actually doing the long division? If so, how?
[Hint: Study the remainders while finding the value of $\frac{1}{7}$ carefully.] Answer:
Yes. It can be done as follows.

$$
\begin{aligned}
& \frac{2}{7}=2 \times \frac{1}{7}=2 \times 0 . \overline{142857}=0 . \overline{285714} \\
& \frac{3}{7}=3 \times \frac{1}{7}=3 \times 0 . \overline{142857}=0 . \overline{428571} \\
& \frac{4}{7}=4 \times \frac{1}{7}=4 \times 0 . \overline{142857}=0 . \overline{571428} \\
& \frac{5}{7}=5 \times \frac{1}{7}=5 \times 0 . \overline{142857}=0 . \overline{714285} \\
& \frac{6}{7}=6 \times \frac{1}{7}=6 \times 0 . \overline{142857}=0 \overline{857142}
\end{aligned}
$$

Question 3:

Express the following in the form ${ }^{\frac{p}{q}}$
(i) $0 . \overline{6}$
(ii) $0.4 \overline{7}$
(iii) $0 . \overline{001}$

Answer:
(i) $0 . \overline{6}=0.666 \ldots$

Let $x=0.666 \ldots$
$10 x=6.666 \ldots \quad$, where p and q are integers and q $\neq 0$.

$$
\begin{aligned}
& 10 \mathrm{x}=6+\mathrm{x} \\
& 9 \mathrm{x}=6 \\
& x=\frac{2}{3} \\
& \text { (ii) } 0 . \overline{47}=0.4777 \ldots . . \\
& =\frac{4}{10}+\frac{0.777}{10} \\
& \text { Let } \mathrm{x}=0.777 \ldots
\end{aligned}
$$

Cbse-spot.blogspot.com

$$
\begin{aligned}
& 10 \mathrm{x}=7.777 \ldots \\
& 10 \mathrm{x}=7+\mathrm{x} \\
& x=\frac{7}{9}
\end{aligned} \begin{array}{r}
\begin{array}{r}
\frac{4}{10}+\frac{0.777 \ldots}{10}=\frac{4}{10}+\frac{7}{90} \\
\quad=\frac{36+7}{90}=\frac{43}{90}
\end{array} \\
\text { (iii) } \begin{array}{r}
0.001=0.001001 \ldots
\end{array} \\
\begin{array}{l}
\text { Let } \mathrm{x}=0.001001 \ldots \\
1000 \mathrm{x}=1.001001 \ldots \\
1000 \mathrm{x}=1+\mathrm{x} \\
999 \mathrm{x}=1
\end{array} \\
x=\frac{1}{999} \\
\text { Question } 4:
\end{array}
$$

\underline{p}
Express 0.99999...in the form ${ }^{q}$. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Answer:
Let $x=0.9999$...
$10 x=9.9999 . .$.
$10 x=9+x$
$9 x=9 x=$
1

Question 5:

What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$? Perform the division to check your answer.

Answer:
It can be observed that,

Cbse-spot.blogspot.com

$\frac{1}{17}=0 . \overline{0588235294117647}$
There are 16 digits in the repeating block of the decimal expansion of $\frac{1}{17}$.

Question 6:

 integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Answer:
Terminating decimal expansion will occur when denominator q of rational number $\frac{p}{q}$ is either of $2,4,5,8,10$, and so on...

$$
\begin{aligned}
& \frac{9}{4}=2.25 \\
& \frac{11}{8}=1.375 \\
& \frac{27}{5}=5.4
\end{aligned}
$$

It can be observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator of the given fractions has the power of 2 only or 5 only or both.

Question 7:

Write three numbers whose decimal expansions are non-terminating non-recurring. Answer:

3 numbers whose decimal expansions are non-terminating non-recurring are as follows.
0.505005000500005000005...
0.7207200720007200007200000... 0.080080008000080000080000008...

Question

8:

Cbse-spot.blogspot.com

Find three different irrational numbers between the rational numbers ${ }^{\frac{5}{7}}$ and $^{\frac{9}{11}}$. Answer:

$$
\begin{aligned}
& \frac{5}{7}=0 . \overline{714285} \\
& \frac{9}{11}=0 . \overline{81}
\end{aligned}
$$

3 irrational numbers are as follows.
$0.73073007300073000073 \ldots$
0.75075007500075000075...
0.79079007900079000079 . Question

9:

Classify the following numbers as rational or irrational:
(i) $\sqrt{\sqrt{23}}$ (ii) $\sqrt{\sqrt{225}}$ (iii) 0.3796
(iv) 7.478478 (v) $1.101001000100001 \ldots$
(i) $\sqrt{23}=4.79583152331 \ldots$
(i)

As the decimal expansion of this number is non-terminating non-recurring, therefore, it is an irrational number.
(ii) $\sqrt{225}=15=\frac{15}{1}$

It is a rational number as it can be represented in q form.
(iii) 0.3796

As the decimal expansion of this number is terminating, therefore, it is a rational number.
(iv) $7.478478 \ldots=7 . \overline{478}$

As the decimal expansion of this number is non-terminating recurring, therefore, it is a rational number.
(v) 1.10100100010000 ...

Cbse-spot.blogspot.com

As the decimal expansion of this number is non-terminating non-repeating, therefore, it is an irrational number.

Exercise 1.4 Question

1 :

Visualise 3.765 on the number line using successive magnification.

Cbse-spot.blogspot.com

Answer:
3.765 can be visualised as in the following steps.

Question 2:

Visualise ${ }^{4 . \overline{26}}$ on the number line, up to 4 decimal places.
Answer:
$4 . \overline{26}=4.2626 \ldots$
4.2626 can be visualised as in the following steps.

Cbse-spot.blogspot.com

Exercise 1.5 Question 1:

1Classify the following numbers as rational or irrational:

Answer:
(i) $2-\sqrt{5}=2-2.2360679 \ldots$
$=-0.2360679$...
As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

Cbse-spot.blogspot.com

$$
(3+\sqrt{23})-\sqrt{23}=3=\frac{3}{2} \quad \text { form, therefore, it is a rational }
$$

(ii)

$$
\frac{p}{q}
$$

As it can be represented in

$$
\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}
$$

(iii)

As it can be represented in $\frac{p}{q} \quad$ number. form, therefore, it is a (iv)

$$
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=0.7071067811 \ldots
$$

rational number.

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.
(v) $2 \pi=2(3.1415 \ldots$...)
= 6.2830 ...
As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

Cbse-spot.blogspot.com

Question 2:

Simplify each of the following expressions:
(i) $(3+\sqrt{3})(2+\sqrt{2})_{\text {(ii) }}(3+\sqrt{3})(3-\sqrt{3})$
(iii) $(\sqrt{5}+\sqrt{2})_{\text {(iv) }}^{2}(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

Answer:
(i) $(3+\sqrt{3})(2+\sqrt{2})=3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2})$
$=6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}$
(ii) $(3+\sqrt{3})(3-\sqrt{3})=(3)^{2}-(\sqrt{3})^{2}$
$=9-3=6$
(iii) $(\sqrt{5}+\sqrt{2})^{2}=(\sqrt{5})^{2}+(\sqrt{2})^{2}+2(\sqrt{5})(\sqrt{2})$
$=5+2+2 \sqrt{10}=7+2 \sqrt{10}$
(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^{2}-(\sqrt{2})^{2}$
= $5-2=3$

Question 3:

Recall, n is defined as the ratio of the circumference (say c) of a circle to its diameter
(say d). That is, $\pi=\frac{c}{d}$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Answer:
There is no contradiction. When we measure a length with scale or any other instrument, we only obtain an approximate rational value. We never obtain an exact value. For this reason, we may not realise that either c or d is irrational. Therefore,
the
fraction is irrational. Hence, \square is irrational.
Question

$$
\sqrt{9.3}^{4:}
$$

Represent on the number line.

Cbse-spot.blogspot.com

Answer:
Mark a line segment $O B=9.3$ on number line. Further, take $B C$ of 1 unit. Find the midpoint D of OC and draw a semi-circle on OC while taking D as its centre. Draw a
(i)
$\frac{1}{\sqrt{7}}_{\text {(ii) }} \frac{1}{\sqrt{7}-\sqrt{6}}$
(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$ (iv) $\frac{1}{\sqrt{7}-2}$

Answer:
(i) $\frac{1}{\sqrt{7}}=\frac{1 \times \sqrt{7}}{1 \times \sqrt{7}}=\frac{\sqrt{7}}{7}$
$\begin{aligned} & \text { (i) } \\ & \text { perpend } \\ & \text { Taking }\end{aligned}$
is $\sqrt{9.3}$.

Question 5:
Rationalise the denominators of the following:

Cbse-spot.blogspot.com

$$
\begin{aligned}
& \text { (ii) } \frac{1}{\sqrt{7}-\sqrt{6}}=\frac{1(\sqrt{7}+\sqrt{6})}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})} \\
& =\frac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2}-(\sqrt{6})^{2}} \\
& =\frac{\sqrt{7}+\sqrt{6}}{7-6}=\frac{\sqrt{7}+\sqrt{6}}{1}=\sqrt{7}+\sqrt{6} \\
& =\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{1}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})} \\
& \text { (iii) } \\
& =\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}=\frac{\sqrt{5}-\sqrt{2}}{5-2} \\
& =\frac{\sqrt{5}-\sqrt{2}}{3} \\
& \text { (iv) } \\
& \begin{array}{l}
\sqrt{7}-2
\end{array} \frac{1}{(\sqrt{7}-2)(\sqrt{7}+2)} \\
& =\frac{\sqrt{7}+2}{(\sqrt{7})^{2}-(2)^{2}} \\
& =\frac{\sqrt{7}+2}{7-4}=\frac{\sqrt{7}+2}{3} \\
& =
\end{aligned}
$$

Exercise 1.6 Question 1:

Find:
(i) $64^{\frac{1}{2}}$ (ii) $32_{\text {(iii) }} 125^{\frac{1}{3}}$

Cbse-spot.blogspot.com

Find:
(i) $9^{9^{\frac{3}{2}}}$ (ii) $32^{\frac{2}{5}}$ (iii) $16^{\frac{3}{4}}$
(iv) $125^{\frac{-1}{3}}$

Answer:
Answer:
(i)

$$
\begin{array}{rlr}
64^{\frac{1}{2}} & =\left(2^{6}\right)^{\frac{1}{2}} \\
& =2^{6 \times \frac{1}{2}} & {\left[\left(a^{m}\right)^{n}=a^{m n}\right]} \\
& =2^{3}=8 &
\end{array}
$$

(ii)
$32^{\frac{1}{5}}=\left(2^{5}\right)^{\frac{1}{5}}$
$=(2)^{5 \times \frac{1}{5}}$
$\left[\left(a^{m}\right)^{n}=a^{m n}\right]$

$$
=2^{\prime}=2
$$

(iii)
$(125)^{\frac{1}{3}}=\left(5^{3}\right)^{\frac{1}{3}}$

$$
\begin{array}{ll}
=5^{3 \times \frac{1}{3}} & {\left[\left(a^{m}\right)^{n}=a^{m m}\right]} \\
=5^{1}=5
\end{array}
$$

Question 2:

Cbse-spot.blogspot.com

(i)

$$
\begin{array}{rlr}
9^{\frac{3}{2}} & =\left(3^{2}\right)^{\frac{3}{2}} \\
& =3^{2 \times \frac{3}{2}} & {\left[\left(a^{m}\right)^{n}=a^{m n}\right]} \\
& =3^{3}=27 &
\end{array}
$$

(ii)
$(32)^{\frac{2}{5}}=\left(2^{5}\right)^{\frac{2}{5}}$

$$
\begin{array}{ll}
=2^{5 \times \frac{2}{3}} & {\left[\left(a^{m}\right)^{n}=a^{m n}\right]} \\
=2^{2}=4 &
\end{array}
$$

(iii)
$(16)^{\frac{3}{4}}=\left(2^{4}\right)^{\frac{3}{4}}$

$$
\begin{array}{ll}
=2^{4 \times \frac{3}{4}} & {\left[\left(a^{m}\right)^{n}=a^{m n}\right]} \\
=2^{3}=8 &
\end{array}
$$

(iv)

$$
\begin{array}{rlr}
(125)^{\frac{-1}{3}} & =\frac{1}{(125)^{\frac{1}{3}}} & {\left[a^{-m}=\frac{1}{a^{m}}\right]} \\
& =\frac{1}{\left(5^{3}\right)^{\frac{1}{3}}} & \\
& =\frac{1}{5^{3 \times \frac{1}{3}}} & {\left[\left(a^{m \prime}\right)^{n}=a^{m n \prime}\right]} \\
& =\frac{1}{5} &
\end{array}
$$

Question 3:

Cbse-spot.blogspot.com

Simplify:
(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$ (ii) $\left(\frac{1}{3^{3}}\right)^{7}$
(iii) 11^{14}
(iv) $7^{\frac{1}{2}} .8^{\frac{1}{2}}$

Answer:
(i)

$$
\begin{aligned}
2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} & =2^{\frac{2}{3}+\frac{1}{5}} \\
& =2^{\frac{10+3}{15}}=2^{\frac{13}{15}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\left(\frac{1}{3^{3}}\right)^{\top} & =\frac{1}{3^{3 \times 7}} & {\left[\left(a^{m}\right)^{n}=a^{m m}\right] } \\
& =\frac{1}{3^{21}} & \\
& =3^{-21} & {\left[\frac{1}{a^{m \prime \prime}}=a^{-m}\right] }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} & =11^{\frac{1}{2}-\frac{1}{4}} \\
& =11^{\frac{2-1}{4}}=11^{\frac{1}{4}}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
7^{\frac{1}{2} \cdot 8^{\frac{1}{2}}} & =(7 \times 8)^{\frac{1}{2}} \quad\left[a^{m} \cdot b^{m \prime}=(a b)^{m}\right] \\
& =(56)^{\frac{1}{2}}
\end{aligned}
$$

