Class IX Chapter 8 - Quadrilaterals Maths

Exercise 8.1 Question 1:

The angles of quadrilateral are in the ratio 3: 5: 9: 13. Find all the angles of the quadrilateral.

Answer:
Let the common ratio between the angles be x. Therefore, the angles will be $3 x, 5 x$, $9 x$, and $13 x$ respectively.

As the sum of all interior angles of a quadrilateral is 360°,
$\therefore 3 x+5 x+9 x+13 x=360^{\circ}$
$30 x=360^{\circ} x$
$=12^{\circ}$

Hence, the angles are
$3 x=3 \times 12=36^{0} 5 x=$
$5 \times 12=60^{\circ}$
$9 x=9 \times 12=108^{0} 13 x=$
$13 \times 12=156^{\circ}$ Question 2 :

If the diagonals of a parallelogram are equal, then show that it is a rectangle.
Answer:

Let $A B C D$ be a parallelogram. To show that $A B C D$ is a rectangle, we have to prove that one of its interior angles is 90°.

In $\triangle A B C$ and $\triangle D C B$,

```
AB = DC (Opposite sides of a parallelogram are equal)
BC = BC (Common)
AC = DB (Given)
\therefore\triangleABC\cong\triangleDCB (By SSS Congruence rule)
#}
    ABC = DCB
```

It is known that the sum of the measures of angles on the same side of transversal is 180°.

$$
\begin{aligned}
& \angle \angle A B C+D C B=180^{\circ}(A B \| C D) \\
& \Rightarrow \angle A B C+\angle A B C=180^{\circ} \\
& \Rightarrow 2 \angle A B C=180^{\circ} \\
& \Rightarrow \angle A B C=90^{\circ}
\end{aligned}
$$

Since $A B C D$ is a parallelogram and one of its interior angles is $90^{\circ}, A B C D$ is a rectangle.

Question 3:

Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Answer:

Let $A B C D$ be a quadrilateral, whose diagonals $A C$ and $B D$ bisect each other at right angle i.e., $\mathrm{OA}=\mathrm{OC}, \mathrm{OB}=\mathrm{OD}$, and $\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COD}=\angle \mathrm{AOD}=90^{\circ}$. To prove $A B C D$ a rhombus, we have to prove $A B C D$ is a parallelogram and all the sides of $A B C D$ are equal.

In $\triangle A O D$ and $\triangle C O D$,
$O A=O C$ (Diagonals bisect each other)
$\angle A O D=\angle C O D$ (Given)
OD = OD (Common)
$\therefore \triangle A O D \cong \triangle C O D$ (By SAS congruence rule)
$\therefore A D=C D(1)$
Similarly, it can be proved that
$A D=A B$ and $C D=B C$ (2)
From equations (1) and (2),
$A B=B C=C D=A D$
Since opposite sides of quadrilateral $A B C D$ are equal, it can be said that $A B C D$ is a parallelogram. Since all sides of a parallelogram $A B C D$ are equal, it can be said that $A B C D$ is a rhombus.

Question 4:

Show that the diagonals of a square are equal and bisect each other at right angles.
Answer:

Let $A B C D$ be a square. Let the diagonals $A C$ and $B D$ intersect each other at a point O. To prove that the diagonals of a square are equal and bisect each other at right angles,
we have to prove $A C=B D, O A=O C, O B=O D$, and $\angle A O B=90^{\circ}$.

In $\triangle A B C$ and $\triangle D C B$,
$A B=D C$ (Sides of a square are equal to each other)
$\angle \mathrm{ABC}=\angle \mathrm{DCB}$ (All interior angles are of 90°)
$B C=C B$ (Common side)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$ (By SAS congruency)
$\therefore \mathrm{AC}=\mathrm{DB}(\mathrm{By} \mathrm{CPCT})$
Hence, the diagonals of a square are equal in length.
In $\triangle A O B$ and $\triangle C O D$,
$\angle A O B=\angle C O D$ (Vertically opposite angles)
$\angle \mathrm{ABO}=\angle \mathrm{CDO}$ (Alternate interior angles)
$A B=C D$ (Sides of a square are always equal)
$\angle \Delta \mathrm{AOB} \angle \triangle \mathrm{COD}$ (By AAS congruence rule)
$\angle \mathrm{AO}=\mathrm{CO}$ and $\mathrm{OB}=\mathrm{OD}(\mathrm{By} \mathrm{CPCT})$
Hence, the diagonals of a square bisect each other.
In $\triangle A O B$ and $\triangle C O B$,
As we had proved that diagonals bisect each other, therefore,
$A O=C O$

```
AB = CB (Sides of a square are equal)
BO = BO (Common)
\angle\triangleAOB \angle\triangleCOB (By SSS congruency)
\angleAOB = \angleCOB (By CPCT)
However, }\angle\textrm{AOB}+\angleCOB=180\circ (Linear pair)
```

$\angle A O B=180^{\circ} 2$
$\angle A O B=90^{\circ}$

Hence, the diagonals of a square bisect each other at right angles.

Question 5:

Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Answer:

Let us consider a quadrilateral ABCD in which the diagonals AC and BD intersect each other at O. It is given that the diagonals of $A B C D$ are equal and bisect each other at right angles. Therefore, $A C=B D, O A=O C, O B=O D$, and $\angle A O B=\angle B O C=\angle C O D$ $\angle A O D==90^{\circ}$. To prove $A B C D$ is a square, we have to prove that $A B C D$ is a parallelogram, $A B=B C=C D=A D$, and one of its interior angles is 90°.

In $\triangle A O B$ and $\triangle C O D$,
$A O=C O$ (Diagonals bisect each other)
$O B=O D$ (Diagonals bisect each other)

```
\angleAOB = \angleCOD (Vertically opposite angles)
\angle\triangleAOB \angle\triangleCOD (SAS congruence rule)
\angleAB = CD (By CPCT) ... (1)
```

And, $\angle O A B=\angle O C D$ (By CPCT)
However, these are alternate interior angles for line $A B$ and $C D$ and alternate interior angles are equal to each other only when the two lines are parallel. $\angle A B \| C D$.

From equations (1) and (2), we obtain ABCD is
a parallelogram.

In $\triangle A O D$ and $\triangle C O D$,
AO = CO (Diagonals bisect each other)
$\angle A O D=\angle C O D\left(\right.$ Given that each is $\left.90^{\circ}\right)$
OD = OD (Common)
$\angle \triangle \mathrm{AOD} \angle \triangle \mathrm{COD}$ (SAS congruence rule)
$\angle A D=D C \ldots$ (3)
However, $A D=B C$ and $A B=C D$ (Opposite sides of parallelogram $A B C D$)
$\angle A B=B C=C D=D A$
Therefore, all the sides of quadrilateral $A B C D$ are equal to each other.
In $\triangle A D C$ and $\triangle B C D$,
$A D=B C$ (Already proved)
$A C=B D$ (Given)
DC = CD (Common)
$\angle \triangle \mathrm{ADC} \angle \triangle \mathrm{BCD}$ (SSS Congruence rule)
$\angle \angle \mathrm{ADC}=\angle \mathrm{BCD}(\mathrm{By} \mathrm{CPCT})$
However, $\angle A D C+\angle B C D=180^{\circ}$ (Co-interior angles)
$\angle \angle \mathrm{ADC}+\angle \mathrm{ADC}=180^{\circ}$
$\angle 2 \angle A D C=180^{\circ}$
$\angle \angle A D C=90^{\circ}$ One of the interior angles of quadrilateral ABCD is a right angle.

Thus, we have obtained that $A B C D$ is a parallelogram, $A B=B C=C D=A D$ and one of its interior angles is 90°. Therefore, $A B C D$ is a square.

Question 6:

Diagonal $A C$ of a parallelogram $A B C D$ bisects $\angle A$ (see the given figure). Show that i)
It bisects $\angle \mathrm{C}$ also, (
(ii) $A B C D$ is a rhombus.

Answer:
(i) $A B C D$ is a parallelogram.
$\angle \angle \mathrm{DAC}=\angle \mathrm{BCA}$ (Alternate interior angles) \ldots (1)
And, $\angle B A C=\angle D C A$ (Alternate interior angles) ... (2) However,
it is given that $A C$ bisects $\angle A$.
$\angle \angle D A C=\angle B A C \ldots$
From equations (1), (2), and (3), we obtain
$\angle D A C=\angle B C A=\angle B A C=\angle D C A \ldots$
$\angle \angle D C A=\angle B C A$
Hence, AC bisects $\angle \mathrm{C}$.
(ii)From equation (4), we obtain
$\angle D A C=\angle D C A$
$\angle \mathrm{DA}=\mathrm{DC}$ (Side opposite to equal angles are equal)
However, $D A=B C$ and $A B=C D$ (Opposite sides of a parallelogram)
$\angle A B=B C=C D=D A$ Hence,
$A B C D$ is a rhombus.

Question 7:
$A B C D$ is a rhombus. Show that diagonal $A C$ bisects $\angle A$ as well as $\angle C$ and diagonal $B D$ bisects $\angle B$ as well as $\angle D$.

Answer:

Let us join AC.
In $\triangle A B C$,
$B C=A B$ (Sides of a rhombus are equal to each other)
$\angle \angle 1=\angle 2$ (Angles opposite to equal sides of a triangle are equal)
However, $\angle 1=\angle 3$ (Alternate interior angles for parallel lines $A B$ and $C D$)
$\angle \angle 2=\angle 3$
Therefore, $A C$ bisects $\angle C$.
Also, $\angle 2=\angle 4$ (Alternate interior angles for $|\mid$ lines $B C$ and DA)
$\angle \angle 1=\angle 4$
Therefore, $A C$ bisects $\angle A$.
Similarly, it can be proved that BD bisects $\angle B$ and $\angle D$ as well.
Question 8:
$A B C D$ is a rectangle in which diagonal $A C$ bisects $\angle A$ as well as $\angle C$. Show that:
i) $A B C D$ is a square (ii) diagonal $B D$ bisects $\angle B$ as(well as $\angle D$.

Answer:

(i) It is given that $A B C D$ is a rectangle.
$\angle \angle A=\angle C$

$$
\Rightarrow \frac{1}{2} \angle \mathrm{~A}=\frac{1}{2} \angle \mathrm{C}
$$

$$
\Rightarrow \angle \mathrm{DAC}=\angle \mathrm{DCA} \quad(\mathrm{AC} \text { bisects } \angle \mathrm{A} \text { and } \angle \mathrm{C})
$$

However, $D A=B C$ and $A B=C D$ (Opposite sides of a rectangle are equal)
$\angle A B=B C=C D=D A$
$A B C D$ is a rectangle and all of its sides are equal.
Hence, $A B C D$ is a square.
(ii) Let us join BD.

In $\triangle B C D$,
$B C=C D$ (Sides of a square are equal to each other)
$\angle C D B=\angle C B D$ (Angles opposite to equal sides are equal)
However, $\angle C D B=\angle A B D$ (Alternate interior angles for $A B \| C D$)
$\angle \angle C B D=\angle A B D$
$\angle B D$ bisects $\angle \mathrm{B}$.
Also, $\angle C B D=\angle A D B$ (Alternate interior angles for $B C \| A D$)
$\angle \angle \mathrm{CDB}=\angle \mathrm{ABD} \angle$
$B D$ bisects $\angle \mathrm{D}$.

Question 9:

In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=$ $B Q$ (see the given figure). Show that:

i) $\triangle \mathrm{APD} \angle \triangle \mathrm{CQB}($
(ii) $\mathrm{AP}=\mathrm{CQ}$ iii)
$\triangle A Q B<\triangle C P D($
(iv) $A Q=C P(v) A P C Q$ is a parallelogram

Answer:
(i) In $\triangle A P D$ and $\triangle C Q B$,
$\angle A D P=\angle C B Q$ (Alternate interior angles for $B C \| A D$)
$A D=C B$ (Opposite sides of parallelogram ABCD)
$D P=B Q$ (Given)
$\angle \triangle \mathrm{APD} \angle \triangle \mathrm{CQB}$ (Using SAS congruence rule) ii)
As we had observed that $\triangle \mathrm{APD} \angle \triangle \mathrm{CQB}$, (
$\angle A P=C Q(C P C T)$
(iii) In $\triangle A Q B$ and $\triangle C P D$,
$\angle A B Q=\angle C D P$ (Alternate interior angles for $A B \| C D$)
$A B=C D$ (Opposite sides of parallelogram ABCD)
$B Q=D P($ Given $)$
$\angle \triangle \mathrm{AQB} \angle \triangle \mathrm{CPD}$ (Using SAS congruence rule) iv)
As we had observed that $\triangle A Q B<\triangle C P D$, (
$\angle A Q=C P(C P C T)$
(v) From the result obtained in (ii) and (iv),
$A Q=C P$ and $A P=C Q$
Since
opposite sides in
quadrilateral APCQ
are equal
to each other,
APCQ is a parallelogram.

Question 10:

$A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal BD (See the given figure). Show that

i) $\triangle \mathrm{APB} \angle \triangle \mathrm{CQD}($
(ii) $\mathrm{AP}=\mathrm{CQ}$ Answer:
(i) In $\triangle A P B$ and $\triangle C Q D$,
$\angle \mathrm{APB}=\angle \mathrm{CQD}\left(\right.$ Each $\left.90^{\circ}\right)$
$A B=C D$ (Opposite sides of parallelogram ABCD) $\angle A B P$
$=\angle C D Q$ (Alternate interior angles for $A B|\mid C D)$
$\angle \triangle \mathrm{APB} \angle \triangle \mathrm{CQD}$ (By AAS congruency)
(ii) By using the above result
$\triangle \mathrm{APB} \angle \triangle C Q D$, we obtain
$A P=C Q(B y C P C T)$ Question 11:

In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F respectively (see the given figure). Show that

(i) Quadrilateral ABED is a parallelogram (ii) Quadrilateral BEFC is a parallelogram
(iii) $A D \| C F$ and $A D=C F$
(iv) Quadrilateral ACFD is a parallelogram
(v) $\quad A C=D F$ vi) $\triangle A B C \angle \triangle D E F$. (

Answer:
(i) It is given that $A B=D E$ and $A B \| D E$.

If two opposite sides of a quadrilateral are equal and parallel to each other, then it will be a parallelogram.

Therefore, quadrilateral ABED is a parallelogram.
(ii) Again, $\mathrm{BC}=\mathrm{EF}$ and $\mathrm{BC}|\mid \mathrm{EF}$

Therefore, quadrilateral BCEF is a parallelogram.
(iii) As we had observed that ABED and BEFC are parallelograms, therefore
$A D=B E$ and $A D \| B E$
(Opposite sides of a parallelogram are equal and parallel)
And, $\mathrm{BE}=\mathrm{CF}$ and $\mathrm{BE} \| \mathrm{CF}$
(Opposite sides of a parallelogram are equal and parallel) $<$
$A D=C F$ and $A D \| C F$
(iv) As we had observed that one pair of opposite sides (AD and CF) of quadrilateral ACFD are equal and parallel to each other, therefore, it is a parallelogram.
(v) As ACFD is a parallelogram, therefore, the pair of opposite sides will be equal and parallel to each other.
$\angle A C \| D F$ and $A C=D F$
(vi) $\triangle A B C$ and $\triangle D E F, A B=D E$ (Given)
$B C=E F$ (Given)
$A C=D F(A C F D$ is a parallelogram $) \angle \triangle A B C$
$\angle \triangle D E F$ (By SSS congruence rule)

Question 12:

$A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$ (see the given figure). Show that

i) $\angle A=\angle B$ (ii)
$\angle C=\angle D$ (iii)
$\triangle A B C \angle \triangle B A D($
(iv) diagonal $A C=$ diagonal $B D$
[Hint: Extend $A B$ and draw a line through C parallel to $D A$ intersecting $A B$ produced at E.]

Answer:
Let us extend $A B$. Then, draw a line through C, which is parallel to $A D$, intersecting $A E$ at point E. It is clear that AECD is a parallelogram.

However, AD = BC (Given)
Therefore, $\mathrm{BC}=\mathrm{CE}$
$\angle C E B=\angle C B E$ (Angle opposite to equal sides are also equal)
Consider parallel lines AD and CE. AE is the transversal line for them.
$\angle A+\angle C E B=180^{\circ}$ (Angles on the same side of transversal)
$\angle A+\angle C B E=180^{\circ}$ (Using the relation $\angle C E B=\angle C B E$) \ldots (1)
However, $\angle B+\angle C B E=180^{\circ}$ (Linear pair angles) \ldots (2)
From equations (1) and (2), we obtain $\angle A$
$=\angle B$
(ii) $A B \| C D$
$\angle A+\angle D=180^{\circ}$ (Angles on the same side of the transversal)
Also, $\angle C+\angle B=180^{\circ}$ (Angles on the same side of the transversal)
$\angle \angle A+\angle D=\angle C+\angle B$
However, $\angle A=\angle B$ [Using the result obtained in (i)] \angle $\angle C=\angle D$
(iii) In $\triangle A B C$ and $\triangle B A D$,
$A B=B A(C o m m o n ~ s i d e)$
$B C=A D$ (Given)
$\angle B=\angle A$ (Proved before)
$\angle \triangle \mathrm{ABC} \angle \triangle \mathrm{BAD}$ (SAS congruence rule)
(iv) We had observed that, $\triangle A B C \angle \triangle B A D$
$\angle A C=B D(B y C P C T)$

Exercise 8.2 Question 1:
$A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and DA (see the given figure). AC is a diagonal. Show that:

(i) $S R \| A C$ and $S R={ }^{\frac{1}{2}} A C$
(ii) $\mathrm{PQ}=\mathrm{SR}$
(iii) PQRS is a parallelogram.

Answer:
(i) In $\triangle A D C, S$ and R are the mid-points of sides $A D$ and $C D$ respectively. In a triangle, the line segment joining the mid-points of any two sides of the triangle is parallel to the third side and is half of it.
$\angle S R \| A C$ and $S R=\frac{1}{2} A C \ldots$
(ii) In $\triangle A B C, P$ and Q are mid-points of sides $A B$ and $B C$ respectively. Therefore, by using mid-point theorem,
$P Q \| A C$ and $P Q=\frac{1}{2} A C \ldots$ (2)
Using equations (1) and (2), we obtain
$P Q \| S R$ and $P Q=S R \ldots(3) \angle$
$P Q=S R$
(iii) From equation (3), we obtained
$P Q \| S R$ and $P Q=S R$
Clearly, one pair of opposite sides of quadrilateral PQRS is parallel and equal.

Hence, PQRS is a parallelogram.

Question 2:

$A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and DA respectively. Show that the quadrilateral PQRS is a rectangle.
Answer: \quad In $\triangle A B C, P$ and Q are the mid-points of sides $A B$ and
 $B C$ respectively.

> AC (Using mid-point theorem) ... (1)
R and S are the mid-points of $C D$ and $A D$ respectively.
$\angle \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\begin{gathered}\frac{1}{2} \\ \\ \\ (2)\end{gathered} \mathrm{RS} \| \mathrm{AC}$ and $\mathrm{RS}=\frac{1}{2} \mathrm{AC}$ (Using mid-point theorem) In $\triangle A D C$,

From equations (1) and (2), we obtain
$P Q|\mid R S$ and $P Q=R S$
Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.

Let the diagonals of rhombus $A B C D$ intersect each other at point 0 .
In quadrilateral OMQN,
\because
MQ \| ON $\because(P Q \| A C)$
QN \| OM (QR || BD)
Therefore, OMQN is a parallelogram.
$\angle \angle M Q N=\angle N O M$
$\angle \angle \mathrm{PQR}=\angle \mathrm{NOM}$

However, $\angle N O M=90^{\circ}$ (Diagonals of a rhombus are perpendicular to each other) \angle $\angle \mathrm{PQR}=90^{\circ}$

Clearly, PQRS is a parallelogram having one of its interior angles as 90°.
Hence, PQRS is a rectangle.

Question 3:

$A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.

Answer:

Let us join AC and BD.
In $\triangle A B C$,
P and Q are the mid-points of $A B$ and $B C$ respectively.
$\angle P Q\left|\mid A C\right.$ and $P Q \quad \frac{1}{2}=\quad A C$ (Mid-point theorem) \ldots (1)
Similarly in
$\triangle \mathrm{ADC}, \quad \frac{1}{2}$

SR \| AC and SR = AC (Mid-point theorem) ... (2)
Clearly, PQ || SR and PQ = SR
Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.
$\angle \mathrm{PS} \| \mathrm{QR}$ and $\mathrm{PS}=\mathrm{QR}$ (Opposite sides of parallelogram)... (3)
In $\triangle B C D, Q$ and R are the mid-points of side $B C$ and $C D$ respectively.
$\angle \mathrm{QR} \| \mathrm{BD}$ and $\mathrm{QR}=\frac{\frac{1}{2}}{\mathrm{BD}}$ (Mid-point theorem)..
However, the diagonals of a rectangle are equal. \angle
$A C=B D . .(5)$
By using equation (1), (2), (3), (4), and (5), we obtain $P Q=Q R=S R=P S$ Therefore, $P Q R S$ is a rhombus.

Question 4:
$A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid - point of $A D$. A line is drawn through E parallel to $A B$ intersecting $B C$ at F (see the given figure).

Show that F is the mid-point of BC .

Answer:
Let EF intersect DB at G.

By converse of mid-point theorem, we know that a line drawn through the mid-point of any side of a triangle and parallel to another side, bisects the third side.

In $\triangle A B D$,
$E F \| A B$ and E is the mid-point of $A D$.
Therefore, G will be the mid-point of DB.
As EF \| $A B$ and $A B \| C D$,
$\angle \mathrm{EF} \| \mathrm{CD}$ (Two lines parallel to the same line are parallel to each other)
In $\triangle B C D, G F \| C D$ and G is the mid-point of line $B D$. Therefore, by using converse of mid-point theorem, F is the mid-point of $B C$.

Question 5:

In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.

Answer:
$A B C D$ is a parallelogram.
$\angle A B|\mid C D$
And hence, AE || FC
Again, $A B=C D$ (Opposite sides of parallelogram $A B C D$)
${ }^{\frac{1}{2}} \mathrm{AB}={ }^{\frac{1}{2}} \mathrm{CD}$
$A E=F C(E$ and F are mid-points of side $A B$ and $C D)$
In quadrilateral AECF, one pair of opposite sides (AE and CF) is parallel and equal to each other. Therefore, AECF is a parallelogram. $\angle A F \| E C$ (Opposite sides of a parallelogram)

In $\triangle D Q C, F$ is the mid-point of side DC and $F P|\mid C Q$ (as AF || EC). Therefore, by using the converse of mid-point theorem, it can be said that P is the mid-point of

DQ.
$\angle \mathrm{DP}=\mathrm{PQ} . .$.
Similarly, in $\triangle A P B, E$ is the mid-point of side $A B$ and $E Q \| A P$ (as AF || EC).
Therefore, by using the converse of mid-point theorem, it can be said that
Q is the mid-point of $P B$.
$\angle \mathrm{PQ}=\mathrm{QB} \ldots$ (2)
From equations (1) and (2), DP
$=P Q=B Q$
Hence, the line segments AF and EC trisect the diagonal BD.

Question 6:

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Answer:

Let $A B C D$ is a quadrilateral in which P, Q, R, and S are the mid-points of sides $A B, B C$, $C D$, and $D A$ respectively. Join $P Q, Q R, R S, S P$, and $B D$.

In $\triangle A B D, S$ and P are the mid-points of $A D$ and $A B$ respectively. Therefore, by using mid-point theorem, it can be said that
$S P\left|\mid B D\right.$ and $S P={ }^{\frac{1}{2}} \quad B D \ldots$ (1)
Similarly in
$\triangle B C D$,

$$
\frac{1}{2}
$$

$Q R \| B D$ and $Q R=B D .$.

From equations (1) and (2), we obtain
$S P \| Q R$ and $S P=Q R$
In quadrilateral SPQR, one pair of opposite sides is equal and parallel to each other.
Therefore, SPQR is a parallelogram.
We know that diagonals of a parallelogram bisect each other.
Hence, PR and QS bisect each other.
Question 7:
$A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to BC intersects AC at D. Show that
(i) D is the mid-point of AC
ii) $M D \angle A C$
$\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$
(iii)

Answer:

(i) In $\triangle A B C$,

It is given that M is the mid-point of $A B$ and $M D \| B C$.
Therefore, D is the mid-point of $A C$. (Converse of mid-point theorem)
(ii) As DM \| CB and AC is a transversal line for them, therefore,
$\angle \mathrm{MDC}+\angle \mathrm{DCB}=180^{\circ}$ (Co-interior angles)
$\angle M D C+90^{\circ}=180^{\circ}$

```
\angleMDC = 900
CMD < AC
```

(iii) Join MC.

In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{CMD}$,
$A D=C D(D$ is the mid-point of side $A C)<$
ADM $=\angle C D M\left(\right.$ Each $\left.90^{\circ}\right)$
DM = DM (Common)
$\angle \triangle \mathrm{AMD} \angle \triangle \mathrm{CMD}$ (By SAS congruence rule)
Therefore, $\mathrm{AM}=\mathrm{CM}$ (By CPCT)
$\frac{1}{2}$
However, $A M=A^{2}$ (M is the mid-point of $A B$)
Therefore, it can be said that
$C M=A M={ }^{\frac{1}{2}} A B$

